1

Construction en bois Bachelor

Les connecteurs Clous, vis

EPFL

Les connecteurs

Clous et vis

Clou partiellement torsadé avec rondelle

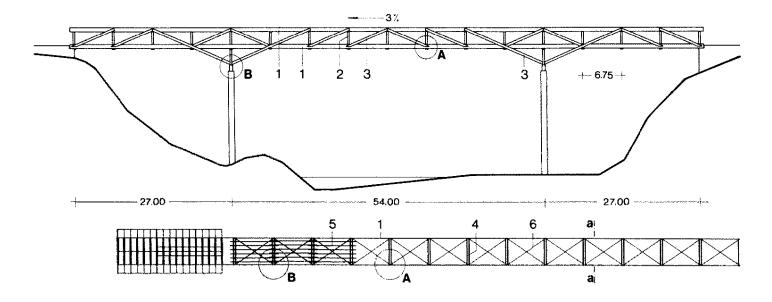
Clou cannelé en bande

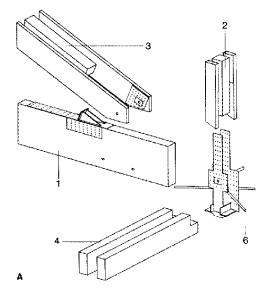
Les connecteurs

Clous et vis

Vis universelles en magasin

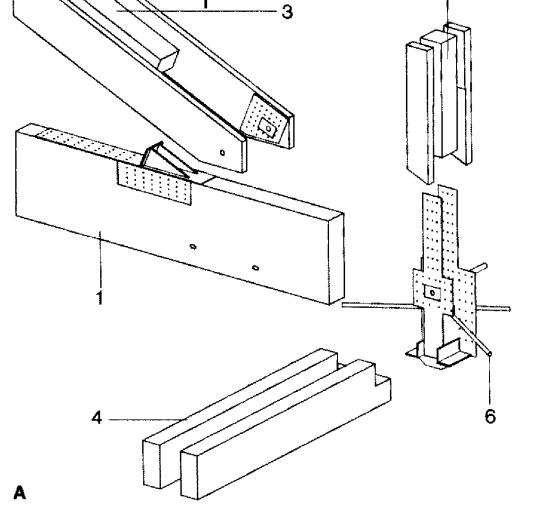
Vis avec rondelle intégrée


Clou lisse



Clous lisses en bande

Assemblage


Ensemble de connecteurs pour transmettre un effort

Assemblage

Ensemble de connecteurs pour transmettre un effort

3 Types de clous

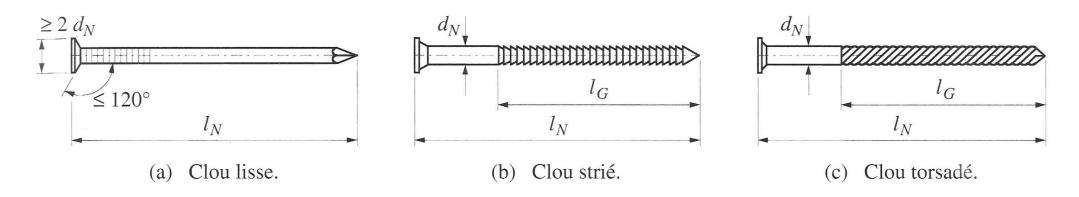


Fig. 5.26 Caractéristiques géométriques des différents types de clous de construction.

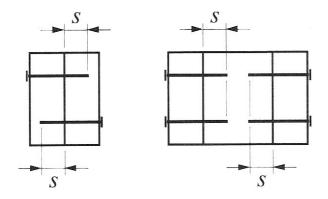
La résistance

```
R_{d, Verb} = k_{red} \, n_{tot} \, p \, R_d (98)

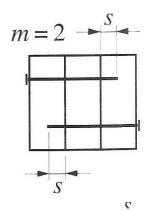
R_{d, Verb} valeur de calcul de la résistance ultime d'un assemblage cloué coefficient de réduction selon le chiffre 6.1.4.2 nombre total de clous de l'assemblage cloué p nombre de sections cisaillées par clou

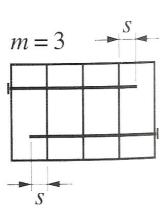
R_d valeur de calcul de la résistance ultime par clou et par section cisaillée, selon le chiffre 6.4.2.1.1 resp. 6.4.3.1.1.
```

Facteur de réduction kred

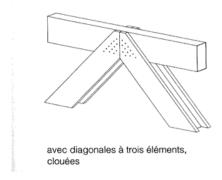

$$k_{red} = n^{-0.1} \sqrt[4]{\frac{a_1}{10d}} \frac{90^\circ - \alpha}{90^\circ} + \frac{\alpha}{90^\circ}$$
 cependant $k_{red} \le 1.0$

- n nombre de connecteurs alignés parallèlement au fil
- a₁ espacement entre connecteurs parallèlement au fil
- d diamètre du connecteur
- lpha angle en degrés entre l'effort et le fil.

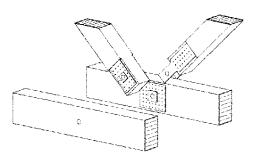

Tableau 17: Coefficient de réduction k_{red} pour un angle α = 0° entre l'effort et la direction du fil


Espacement a ₁ des connecteurs parallèlement		de (connecteurs	Nombre <i>n</i> alignés par	rallèlement a	au fil	
au fil	1	2	3	4	5	10	15
7d	1,0	0,85	0,82	0,80	0,78	0,73	0,70
8 <i>d</i>	1,0	0,88	0,85	0,82	0,81	0,75	0,72
10 <i>d</i>	1,0	0,93	0,90	0,87	0,85	0,79	0,76
12 <i>d</i>	1,0	0,98	0,94	0,91	0,89	0,83	0,80

Assemblage à simple section de cisaillement



Assemblage à double section de cisaillement



Assemblage bois-bois

Assemblage bois-acier

avec goussets estampés et boulons d'articulation, membrure inférieure diaphragmée

Figure 31: Assemblage bois – bois à simple section cisaillée

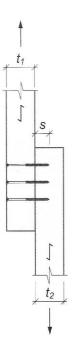
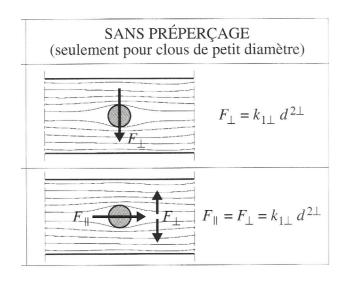
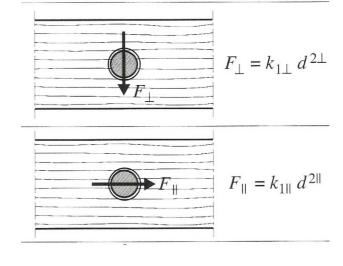



Figure 32: Assemblage acier – bois à simple section cisaillée



Clous sans préperçage

Clous avec préperçage

AVEC PRÉPERÇAGE

La résistance

Tableau 22: Valeurs de calcul de la résistance ultime R_d pour des clous sans préperçage pour η_w = 1,0 et η_t = 1,0

Pénétration du clou s ≥ 9 d ¹)	Bois – bois Angle effort – fil		Acier - Angle ef	
	au fil $^{2)}$ \perp au fil $^{2)}$		au fil ²⁾	\perp au fil $^{2)}$
Clous lisses	$R_d = 92 d^{1,7}$		$R_d = 1$	04 d ^{1,7}
Clous striés et torsadés	$R_d = 104 d^{1,7}$ $R_d = 92 d^{1,7}$		$R_d = 132 d^{1,7 3}$	$R_d = 109 d^{1,7}$

- La pénétration nécessaire pour des assemblages à section de cisaillement simple ou multiple est en général de 9 d. Elle peut être réduite à 6 d si la résistance est réduite proportionnellement à la pénétration. Si la pénétration au-delà de la dernière section cisaillée est inférieure à s < 6 d, on ne prendra pas en compte la résistance de cette section.
- 2) Pour des efforts biais par rapport au fil, les valeurs peuvent être interpolées linéairement.
- Pour s = 12d, il est admis d'augmenter la résistance ultime à $R_d = 161d^{1,7}$ à condition que l'épaisseur de la plaque soit d'au moins 0,5d, minimum 2 mm; interpoler linéairement les valeurs intermédiaires.

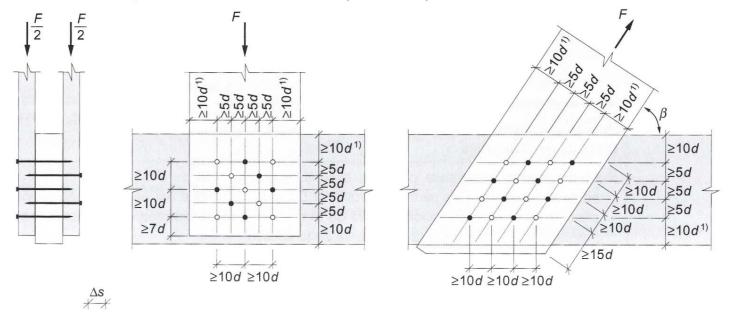
Epaisseur minimale du bois

Tableau 23: Épaisseurs du bois t, clouage sans préperçage

Élément de construction 1)	Épaisseur requise $t_{\it erf}^{\ \ 2)}$	Épaisseur minimale t
Bois massif, bois lamellé collé	9 <i>d</i>	7 d

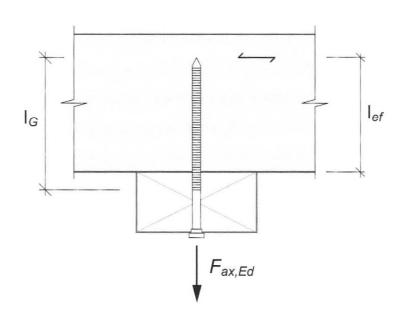
- Matériaux dérivés du bois voir la norme SIA 265/1
- L'épaisseur du bois requise peut être réduite à 7 d si la valeur de calcul de la résistance R_d selon le tableau 22 est réduite proportionnellement à l'épaisseur effective. Des épaisseurs inférieures à cette valeur ne sont pas admises. Si la pénétration s aussi bien que l'épaisseur du bois t sont réduites, la valeur de calcul de la résistance ultime R_d du tableau 22 doit être réduite par le plus petit des deux rapports correspondants.

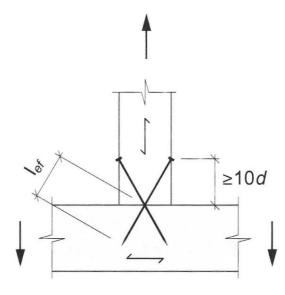
Espacement minimal


Tableau 24: Espacements minimaux des clous sans préperçage

Espacements minimaux	a	⊥ au fil	
	<i>d</i> ≤ 4 mm	d > 4 mm	
distance entre les clous	10 <i>d</i>	12 <i>d</i>	5 d
distance au bord chargé	15 <i>d</i>		10 <i>d</i>
distance au bord non chargé	7 d	9 <i>d</i>	10 <i>d</i> ¹⁾

¹⁾ Il est admis de réduire la distance au bord non chargé à 5 d, pour autant que l'épaisseur du bois soit portée dans le même temps à 14 d.


Espacements minimaux des clous


Figure 27: Espacements minimaux des clous de diamètre $d \le 4$ mm (pour les assemblages à double et à simple section de cisaillement, lorsque $\Delta s \le 5d$)

Résistance à l'arrachement

Figure 28: Définition de la longueur adhérente efficace l_{ef} pour différents cas de clou sollicité selon son axe

Résistance à l'arrachement

Tableau 26: Valeur de calcul de la résistance ultime à l'arrachement $R_{ax,d}$ de clous sans préperçage, pour $\eta_w = 1.0$ et $\eta_t = 1.0$

Type de clou	Résistance à l'arrachement $R_{ax,d}$	Remarque
Clous striés ou torsadés 1)	$k_{lpha}f_{\mathrm{ax},k}$ d $l_{\mathrm{ef}}^{2)}$	Résistance à l'arrachement, en général, paramètre d'arrachement $f_{ax,k}$ selon SN EN 14592
	$20\cdot10^{-6}~ ho_{~k}^2d~l_{ef}$	Exigences minimales posées à la résistance à l'arrachement 3)
	$10\cdot 10^{-6} ho_{k}^2 d l_{ef}$	enfoncés dans du bois sec
Clous lisses	$5\cdot 10^{-6}~ ho_{~k}^2 d~l_{ef}$	enfoncés dans du bois ressuyé, après séchage de celui-ci

¹⁾ Si les clous striés ou torsadés sont enfoncés dans du bois ressuyé, seuls les 2/3 de la résistance à l'arrachement seront pris en compte après séchage de celui-ci.

 $^{^{2)}}$ $k_{\alpha} = 0.62.$

³⁾ Pour des valeurs de résistance à l'arrachement de clous striés ou torsadés dépendant du produit, observer les données du fabricant.

Résistance à l'arrachement

Tableau 26: Valeur de calcul de la résistance ultime à l'arrachement $R_{ax,d}$ de clous sans préperçage, pour $\eta_w = 1.0$ et $\eta_t = 1.0$

Type de clou	Résistance à l'arrachement $R_{ax,d}$	Remarque
Clous striés ou torsadés 1)	$k_{\alpha}f_{\mathrm{ax,k}} \mathrm{d} l_{\mathrm{ef}}^{-2)}$	Résistance à l'arrachement, en général, paramètre d'arrachement $t_{a,k}$ se on SN EN 145/2
	$20\cdot10^{-6}~ ho_{~k}^2d~l_{ef}$	Exigences Minimales posées à la résistance à l'arrachement 3)
Clous lisses	10.10 ⁻⁶ p ² d l	enfoncés dans du bois sec enfoncés dans du bois essuyé, après séchage de celui-ci

¹⁾ Si les clous striés ou torsadés sont enfoncés dans du bois ressuyé, seuls les 2/3 de la résistance à l'arrachement seront pris en compte après séchage de celui-ci.

 $k_{\alpha} = 0.62.$

³⁾ Pour des valeurs de résistance à l'arrachement de clous striés ou torsadés dépendant du produit, observer les données du fabricant.

Poinçonnement du clous

$$R_{ax,d} = k_{\alpha} f_{head,k} d_h^2$$

$$k_{\alpha}$$
 $k_{\alpha} = 0.62$

 $f_{head,k}$ valeur caractéristique du poinçonnement de la tête selon SN EN 14592 en N/mm².

Première approximation

$$R_{ax.d} = 40 \cdot 10^{-6} \rho_k^2 d_h^2$$

 ρ_k valeur caractéristique de la densité en kg/m³ \leq 500 kg/m³ diamètre de la tête du clou en mm.

f head, k selon SN EN 14592

6.1.4.4 Paramètre de traversée de la tête caractéristique,

Pour les pointes à tige lisse, le résultat du paramètre de traversée de la tête caractéristique $f_{\text{head},k}$ doit être déclaré par rapport à une ou plusieurs masses volumiques caractéristiques du bois ou par rapport à d'autres types de produits à base de bois, soit directement en réalisant des essais conformément à l'EN 1383, soit par calcul, à partir des équations appropriées indiquées dans l'EN 1995-1-1.

Pour tous les autres types de pointes, le résultat du paramètre de traversée de la tête caractéristique $f_{head,k}$ doit être déclaré par rapport à une ou plusieurs masses volumiques caractéristiques du bois ou par rapport à d'autres produits à base de bois, en réalisant des essais conformément à l'EN 1383.

f head, k vis würth

f head, k vis würth

A.1.3.2 Résistance à la traversée de la tête

La valeur caractéristique du paramètre de résistance à la traversée de la tête des vis Würth pour du bois d'une densité caractéristique de 350 kg/m³ et pour des matériaux à base de bois tels que :

- du bois contreplaqué conformément aux normes EN 636 et EN 13986
- de l'Oriented Strand Board (OSB) conformément aux normes EN 300 et EN 13986
- des panneaux de particules conformément aux normes EN 312 et EN 13986
- des panneaux de fibres conformément aux normes EN 622-2, EN 622-3 et EN 13986
- des panneaux de particules liées au ciment conformément aux dispositions nationales en vigueur sur le site d'utilisation

présentant une épaisseur supérieure à 20 mm est

 $f_{head,k}$ = 13,0 N/mm² pour des vis Würth présentant une tête de diamètre $d_h \le 19$ mm et pour des vis Würth présentant une tête de diamètre $d_h > 19$ mm ou pour des rondelles.

La masse volumique caractéristique des matériaux à base de bois doit être prise en compte avec une valeur maximale de 380 kg/m³ dans l'équation (8.40b) de la norme EN 1995-1-1.

f _{head, k} vis würth

Pour des matériaux à base de bois présentant une épaisseur comprise entre 12 mm et 20 mm, la valeur caractéristique du paramètre de résistance à la traversée de la tête pour des vis Würth est :

 $f_{head,k} = 8 \text{ N/mm}^2$

Pour des matériaux à base de bois présentant une épaisseur inférieure à 12 mm, la valeur caractéristique de la résistance à la traversée de la tête pour des vis Würth se base sur une valeur caractéristique du paramètre de résistance à la traversée de la tête de 8 N/mm². La résistance à la traversée de la tête doit être limitée à 400 N. Il faut respecter une épaisseur minimale des matériaux à base de bois de 1,2 · d, d étant le diamètre extérieur du filetage, ainsi que les épaisseurs minimales spécifiées au tableau 2.2.

Tableau 1.3 Épaisseur minimale des matériaux à base de bois

Tableda 1.0 Epaledeal milimale ade matemaax a bade de bele				
Matériau à base de bois	Épaisseur minimale en mm			
Bois contreplaqué	6			
Oriented Strand Boards, OSB	8			
Panneaux de particules	8			
Panneaux de fibres (panneaux durs et mi-durs)	6			
Panneaux de particules liées au ciment	. 8 .			

Selon EN 1995-1-1

$$f_{\text{head,k}} = 70 \times 10^{-6} \rho_{\text{k}}^2$$

où:

- $\rho_{\mathbf{k}}$ est la masse volumique caractéristique du bois, en kg/m³.
- (7) Pour les pointes lisses, il convient que la pénétration du côté de la pointe $t_{\rm pen}$ soit au moins égale à 8d. Pour les pointes dont la pénétration du côté de la pointe est inférieure à 12d, il convient de multiplier la capacité à l'arrachement par ($t_{\rm pen}/4d-2$). Pour les pointes crantées, il convient que la pénétration du côté de la pointe soit au moins égale à 6d. Pour les pointes dont la pénétration du côté de la pointe est inférieure à 8d, il convient de multiplier la capacité à l'arrachement par ($t_{\rm pen}/2d-3$).
- (8) Pour du bois de structure qui est mis en œuvre au point de saturation des fibres ou à une valeur proche, et qui est susceptible de sécher sous charge, il convient que les valeurs de $f_{ax,k}$ et $f_{head,k}$ soient multipliées par 2/3.
- (9) Il convient que les espacements et distances pour les pointes chargées axialement soient les mêmes que pour les pointes chargées latéralement.
- (10) Pour le clouage lardé, il convient que la distance à la rive chargée soit au moins égal à 10d (voir **Figure 8.8b**). Il convient qu'il y ait au minimum deux pointes lardées dans un assemblage.

Combinaison cisaillement et arrachement

Sollicitation combinée

Pour les clous sollicités aussi bien dans leur axe $(F_{ax,Ed})$ que perpendiculairement à celui-ci (F_{Ed}) , la condition suivante devra être vérifiée:

$$\left(\frac{F_{ax,Ed}}{R_{ax,d}}\right)^{\alpha} + \left(\frac{F_{Ed}}{R_d}\right)^{\alpha} \le 1 \qquad \text{avec } \alpha = 1 \text{ pour les clous lisses} \\
\text{avec } \alpha = 2 \text{ pour les clous striés et torsadés} \tag{101}$$

 $R_{ax,d}$ et R_d sont les valeurs de calcul de la résistance ultime de l'assemblage dans le cas de l'arrachement seul, respectivement du cisaillement seul.

Combinaison cisaillement et arrachement

Sollicitation combinée

Pour les clous sollicités aussi bien dans leur axe $(F_{ax,Ed})$ que perpendiculairement à celui-ci (F_{Ed}) , la condition suivante devra être vérifiée:

 $R_{ax,d}$ et R_d sont les valeurs de calcul de la résistance ultime de l'assemblage dans le cas de l'arrachement seul, respectivement du cisaillement seul.

Le clou avec préperçage

Résistance

Tableau 27: Valeurs de calcul de la résistance ultime R_d pour des clous avec préperçage, pour η_w = 1,0 et η_t = 1,0

Pénétration $s \ge 9 d^{-1}$		- bois	Acier	45/25/4 (1971) Ref19(2)	
	Angle e	ffort — fil	Angle effort – fil		
	au fil $^{2)}$ \perp au fil $^{2)}$		au fil ²⁾	⊥ au fil ²⁾	
Clous lisses	$R_d = 6 \rho_k^{0.5} d^{1.7}$	$R_d = 4.8 \ \rho_k^{0.5} \ d^{1.7}$	$R_d = 6.6 \ \rho_k^{0.5} \ d^{1.7}$	$R_d = 5.4 \ \rho_k^{0.5} \ d^{1.7}$	
Clous striés et torsadés	$R_d = 5.4 \ \rho_k^{0.5} \ d^{1.7}$	$R_d = 4.8 \ \rho_k^{0.5} \ d^{1.7}$	$R_d = 6.9 \ \rho_k^{0.5} \ d^{1.73}$	$R_d = 5.7 \ \rho_k^{0.5} \ d^{1.7}$	

- La pénétration nécessaire pour des assemblages à section de cisaillement simple ou multiple est en général de 9 d. Elle peut être réduite à 6 d si la résistance est réduite proportionnellement à la pénétration. Si la pénétration au-delà de la dernière section cisaillée est inférieure à s < 6 d, on ne tiendra pas compte la résistance de cette section.
- 2) Pour des efforts biais par rapport au fil, les valeurs peuvent être interpolées linéairement.
- Pour s = 12d, il est admis d'augmenter la résistance ultime à $R_d = 8.4 \ \rho_k^{0.5} d^{1.7}$ à condition que l'épaisseur de la plaque soit d'au moins 0.5d, minimum 2 mm; interpoler linéairement les valeurs intermédiaires.

ρ_k Valeur caractéristique de la densité en kg/m³ (SIA 265 – 3.3 tab. 6 et 3.4 tab. 7)

	Bois r	massif					Bois lam	ellé collé			
C16	C24	C30	D30	GL24k	GL24h	GL28k	GL28h	GL32k	GL32h	GL36k	GL36h
310	350	380	500 ¹⁾	350	380	380	410	410	430	430	450

¹⁾ La valeur de ρ_k à prendre en compte pour ce calcul est limitée à 500 kg/m³

 ho_k : Valeur caractéristique de la densité en kg/m³

Le clou avec préperçage

Espacement

Tableau 29: Espacements minimaux des clous avec préperçage

Espacement minimal	au fil	⊥ au fil
distance entre les clous	7 d	4 d
distance au bord chargé	12 <i>d</i>	6 <i>d</i>
distance au bord non chargé	7 d	4 d

En comparaison sans pré-perçage

distance entre les clous	10 <i>d</i>	12 <i>d</i>	5 <i>d</i>

Le clou avec préperçage

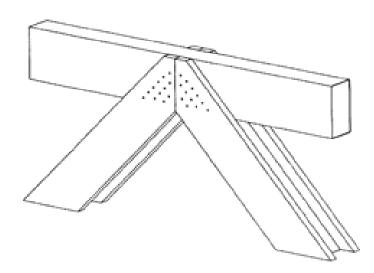
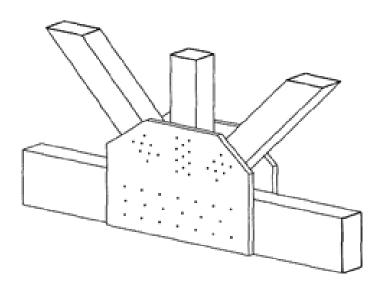
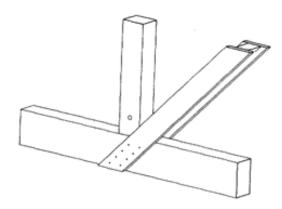

Epaisseur du bois

Tableau 28: Épaisseurs t du bois, clouage avec préperçage

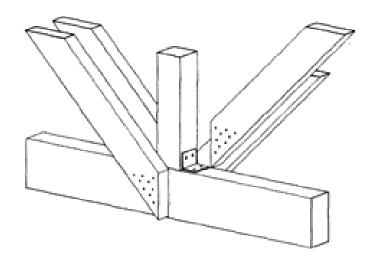

Élément de construction 1)	Épaisseur requise $t_{\it erf}$ 2)	Épaisseur minimale <i>t</i>
Bois massif, bois lamellé collé	9 <i>d</i>	$t \ge 4d$ et $t \ge 24$ mm

- Matériaux dérivés du bois voir SIA 265/1.
- L'épaisseur du bois requise peut être réduite à la valeur minimale, si la valeur de calcul de la résistance ultime R_d du tableau 27 est réduite proportionnellement à l'épaisseur effective. Si la pénétration s aussi bien que l'épaisseur du bois t sont réduites, la valeur de calcul de la résistance ultime R_d du tableau 27 doit être réduite par le plus petit des deux rapports correspondants.

Assemblage

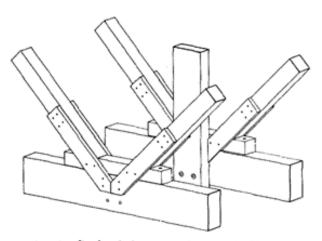


avec diagonales à trois éléments, clouées

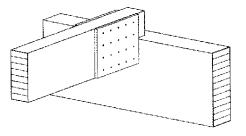


gousset cloué en acier ou en contreplaqué

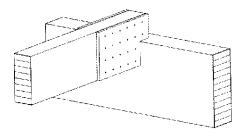
Assemblage



diagonale à trois éléments clouée sur membrure inférieure, montant comprimé assemblé par boulon Simplex

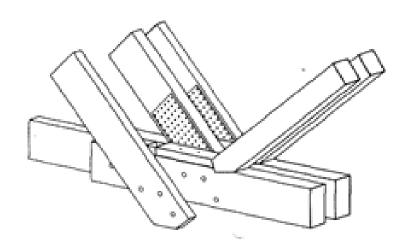

diagonales clouées

Assemblage

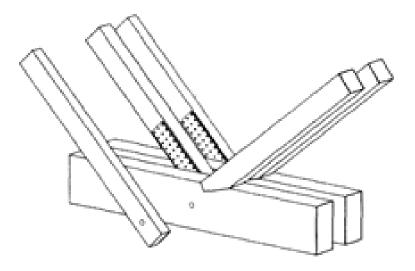


montants fixés à la membrure inférieure par des goujons annulaires et des boulons filetés, diagonales fixées à l'échantignole et à la traverse par des couvrejoints en bois

L'assemblage

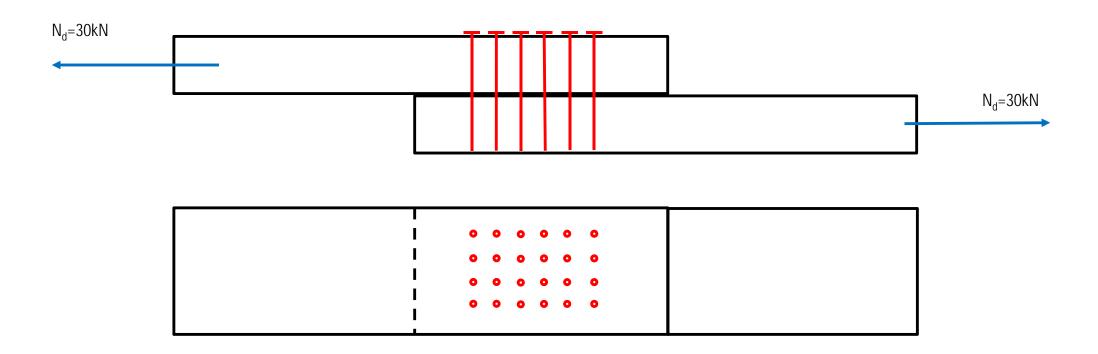


gousset de consolidation cloué ou collé et cloué



gousset de consolidation cloué ou collé et cloué, avec élargissement d'appui

Assemblage avec gousset


diagonales à plusieurs éléments, assemblage comme ci-dessus

diagonales à plusieurs éléments, assemblage comme ci-dessus; barre comprimée avec embrèvement

Exemple

- Joint par recouvrement N_d = 30kN
- La hauteur/largeur de la pièce fait 200 mm

Facteur de réduction kred

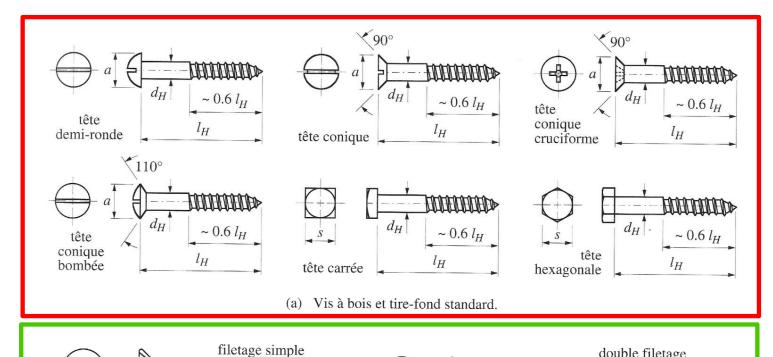
$$k_{red} = n^{-0.1} \sqrt[4]{\frac{a_1}{10d}} \frac{90^{\circ} - \alpha}{90^{\circ}} + \frac{\alpha}{90^{\circ}}$$
 cependant $k_{red} \le 1.0$

- n nombre de connecteurs alignés parallèlement au fil
- a₁ espacement entre connecteurs parallèlement au fil
- d diamètre du connecteur
- lpha angle en degrés entre l'effort et le fil.

Tableau 17: Coefficient de réduction k_{red} pour un angle α = 0° entre l'effort et la direction du fil

Espacement a ₁ des connecteurs parallèlement au fil	Nombre <i>n</i> de connecteurs alignés parallèlement au fil							
	1	2	3	4	5	10	15	
7 <i>d</i>	1,0	0,85	0,82	0,80	0,78	0,73	0,70	
8 <i>d</i>	1,0	0,88	0,85	0,82	0,81	0,75	0,72	
10 <i>d</i>	1,0	0,93	0,90	0,87	0,85	0,79	0,76	
12 <i>d</i>	1,0	0,98	0,94	0,91	0,89	0,83	0,80	

Espacement minimal


Tableau 24: Espacements minimaux des clous sans préperçage

Espacements minimaux	a	⊥ au fil	
	<i>d</i> ≤ 4 mm	d > 4 mm	
distance entre les clous	10 <i>d</i>	12 <i>d</i>	5 <i>d</i>
distance au bord chargé	15	10 <i>d</i>	
distance au bord non chargé	7 d	9 <i>d</i>	10 <i>d</i> 1)

¹⁾ Il est admis de réduire la distance au bord non chargé à 5 d, pour autant que l'épaisseur du bois soit portée dans le même temps à 14 d.

• • •

La vis à bois

Selon DIN7998

Traditionnelle Tire fond

Filetage foré ou laminé

filetage simple

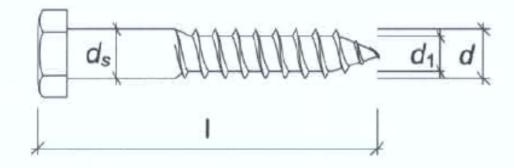
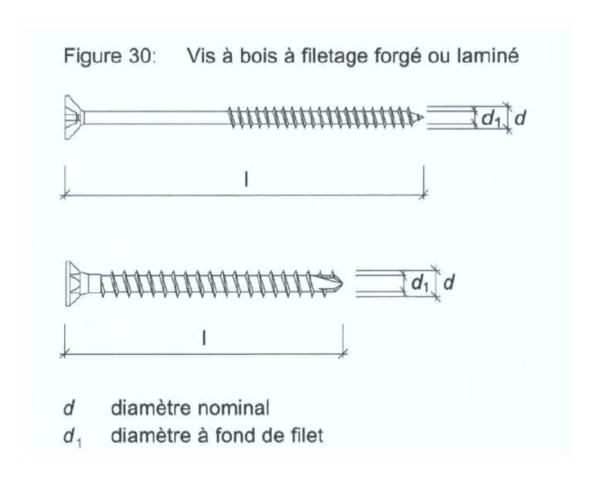

(b) Vis auto-taraudeuses.

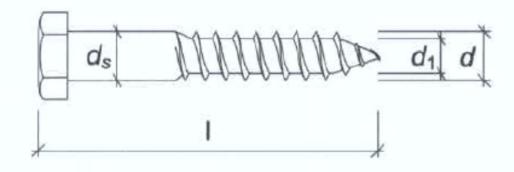
Fig. 5.43 Caractéristiques géométriques des vis à bois et tire-fond de construction.

... Würth/ABC/ et autre

Vis selon DIN 7998


Figure 29: Vis à bois avec filetage usiné selon DIN 7998

- d diamètre nominal
- d₁ diamètre à fond de filet
- d_s diamètre de la tige.


Le diamètre

Vis à bois à filetage forgé ou laminé

Comparaison

Figure 29: Vis à bois avec filetage usiné selon DIN 7998

La vis DIN 7998

Résistance

Tableau 30: Valeur de calcul de la résistance ultime R_d pour des vis à bois à filetage usiné selon DIN 7998 pour $\eta_w = 1.0$ et $\eta_t = 1.0$ (R_d en N, d en mm, ρ_k en kg/m³)

Pénétration $s \ge 9d^{-1}$	Bois – bois Angle effort – fil		Acier – bois Angle effort – fil	
	au fil ²⁾	⊥ au fil ²⁾	au fil ²⁾	\perp au fil $^{2)}$
Section cisaillée dans la tige 3)	$R_d = 3.3 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 2.8 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 4.0 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 3.4 \ \rho_k^{0.5} \ d^{1.8}$
Section cisaillée dans le filetage	$R_d = 2.2 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 1.9 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 2.8 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 2.5 \ \rho_k^{0.5} \ d^{1.8}$

La pénétration nécessaire s_{erf} est de 9d. Elle peut être réduite à 6d si la résistance est réduite proportionnellement à la pénétration.

- ²⁾ Pour des efforts biais par rapport aux fibres, les valeurs peuvent être interpolées linéairement.
- ³⁾ Si la section cisaillée est située à moins de 4*d* de la partie filetée, on utilisera les valeurs de la résistance pour section cisaillée dans le filetage.

La vis filetage forgé ou laminé

Résistance

Tableau 31: Valeur de calcul de la résistance ultime R_d pour des vis à bois à filetage forgé ou laminé pour η_w = 1,0 et η_t = 1,0 (R_d en N, d en mm, ρ_k en kg/m³)

Pénétration $s \ge 9d^{-1}$	Bois – bois ²⁾ Angle effort – fil		Acier – bois Angle effort – fil	
	au fil ³⁾	⊥ au fil ³⁾	au fil ³⁾	\perp au fil $^{3)}$
Assemblage vissé sans préperçage	$R_d = 2.9 \ \rho_k^{0.5} \ d^{1.65}$		$R_d = 3.6 \ \rho_k^{0.5} \ d^{1.65}$	
Assemblage vissé avec préperçage	$R_d = 2.5 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 2.2 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 3.0 \ \rho_k^{0.5} \ d^{1.8}$	$R_d = 2.7 \ \rho_k^{0.5} \ d^{1.8}$

La pénétration nécessaire s_{erf} est de 9d. Elle peut être réduite à 6d si la résistance est réduite proportionnellement à la pénétration.

Pour une longueur efficace du filetage l_{ef} d'au moins 6 d de chaque côté du plan cisaillé, les valeurs R_d pour une liaison acier – bois peuvent être utilisées.

³⁾ Pour des efforts biais par rapport au fil, les valeurs peuvent être interpolées linéairement.

La vis filetage forgé ou laminé

Résistance

Tableau 31: Valeur de calcul de la résistance ultime R_d pour des vis à bois à filetage forgé ou laminé pour $\eta_w = 1.0$ et $\eta_t = 1.0$ (R_d en N, d en mm, ρ_k en kg/m³)

Pénétration $s \ge 9d^{-1}$	Bois – bois ²⁾ Angle effort – fil		Acier – bois Angle effort – fil	
	au fil ³⁾	⊥ au fil ³⁾	au fil ³⁾	⊥ au fil ³⁾
Assemblage vissé sans préperçage	F	$6 mm \geq d$	≥ 12 <i>mm</i>	d ^{1,65}
Assemblage vissé avec préperçage	$R_d = 2.5 \ \rho_k^{0.5} \ d^{1.8}$	$d \geq$	10 mm	$R_d = 2.7 \ \rho_k^{0.5} \ d^{1.8}$

La pénétration nécessaire s_{erf} est de 9d. Elle peut être réduite à 6d si la résistance est réduite proportionnellement à la pénétration.

Pour une longueur efficace du filetage l_{ef} d'au moins 6 d de chaque côté du plan cisaillé, les valeurs R_d pour une liaison acier – bois peuvent être utilisées.

³⁾ Pour des efforts biais par rapport au fil, les valeurs peuvent être interpolées linéairement.

Epaisseurs du bois minimal (sans préperçage)

Tableau 32: Épaisseurs de bois t_1 et t_2 pour des assemblages vissés sans préperçage

Éléments de construction 1)	Épaisseur requise $t_{1,erf}^{\ \ 2)}$	Épaisseurs minimales t_1 et t_2
Bois massif, bois lamellé collé	9 <i>d</i>	t ≥ 7 d

¹⁾ Matériaux dérivés du bois voir SIA 265/1.

Epaisseurs du bois minimal (avec préperçage)

Tableau 33: Épaisseur de bois t_1 pour des assemblages vissés avec préperçage (valable pour les deux types de vis)

Éléments de construction 1)	Épaisseur requise $t_{1,erf}^{\ \ 2)}$	Épaisseurs minimales t_1
Bois massif, bois lamellé collé	9 <i>d</i>	$t \ge 4d$ et $t \ge 24$ mm

¹⁾ Matériaux dérivés du bois voir SIA 265/1.

²⁾ Si les épaisseurs requises ne sont pas atteintes, les valeurs de résistance ultime R_d du tableau 31 doivent être réduites proportionnellement. Il n'est pas admis d'aller en dessous de l'épaisseur minimale. Si la pénétration s aussi bien que l'épaisseur du bois t sont réduites, les valeurs de résistance ultime R_d du tableau 31 doivent être réduites par le plus petit des deux rapports correspondants.

Si les épaisseurs requises ne sont pas atteintes, les valeurs de résistance ultime R_d des tableaux 30 et 31 doivent être réduites proportionnellement. Il n'est pas admis d'aller en dessous de l'épaisseur minimale. Si la pénétration s aussi bien que l'épaisseur du bois t sont réduites, les valeurs de résistance ultime R_d des tableaux 30 et 31 doivent être réduites par le plus petit des deux rapports correspondants.

Espacements minimaux sans préperçage

Tableau 34: Espacements minimaux pour les assemblages vissés sans préperçage, avec $d_1/d \le 0.75$

Espacements minimaux 1)	a	⊥ au fil	
	d = 4 mm	d > 4 mm	
distance entre vis	8 <i>d</i>	10 <i>d</i>	5 <i>d</i>
distance au bord chargé	13 <i>d</i>		8 d
distance au bord non chargé	6 <i>d</i>	7,5 <i>d</i>	8 d ²⁾

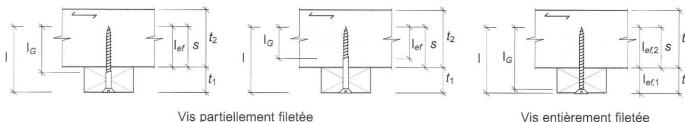
¹⁾ Valable pour $\rho_k \le 420 \text{ kg/m}^3$, pour $\rho_k > 420 \text{ kg/m}^3$ il faut prépercer.

²⁾ La distance au bord non chargé peut être réduite à 4 d, si l'épaisseur minimale est portée à 14 d.

Espacements minimaux avec préperçage

Tableau 35: Espacements minimaux pour les assemblages vissés avec préperçage, avec $d_1/d \le 0.75$

Espacements minimaux	au fil	⊥ au fil
distance entre vis	6 <i>d</i>	3,5 d
distance au bord chargé	10 d	5 d
distance au bord non chargé	6 <i>d</i>	3,5 <i>d</i>

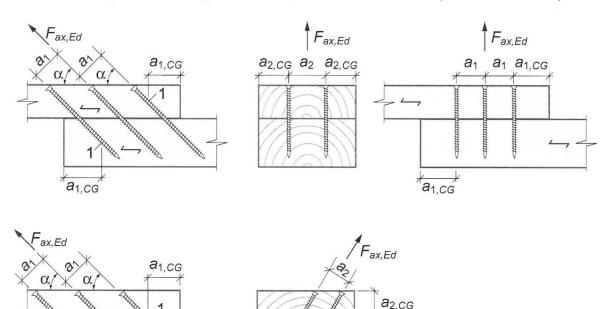

À l'arrachement

La résistance ultime à la sollicitation dans l'axe de la vis d'un assemblage vissé ou d'un groupe de vis doit être vérifiée pour les cas de rupture suivants:

- arrachement de la zone filetée de la vis
- arrachement de la tête de vis
- poinçonnement de la tête de vis
- rupture à la traction de la vis
- flambage de la vis en cas de sollicitation en compression
- rupture en cisaillement d'une partie du bois.

6.5.3.4 La longueur efficace de filetage l_{ef} minimale du côté de la pointe de la vis (figure 34) est de 6 d.

Figure 34: Longueur efficace du filetage l_{ef} du côté de la pointe de la vis



Vis entièrement filetée

À l'arrachement

a_{1,CG}

Figure 33: Espacements minimaux des vis sollicitées dans leur axe (1: centre de gravité de la partie filetée dans la pièce considérée)

a2,c6

a_{2,CG}

a_{2,CG}

a_{2.CG}

A l'arrachement § 6.5.3.5

La valeur de calcul de la résistance à l'arrachement ou à l'enfoncement d'un groupe de vis $R_{ax,d}$ vau

$$R_{ax,d} = n_{tot}^{0,9} \pi d l_{ef} f_{v,\alpha,d}$$

d diamètre nominal en mm selon les chiffres 6.5.1.2 et 6.5.1.3

 n_{tot} nombre total de vis de l'assemblage

 l_{ef} longueur efficace du filetage en mm selon le chiffre 6.5.3.4

 $f_{v,\alpha,d}$ valeur de calcul de la résistance au cisaillement (pour η_w = 1,0 et η_w = 1,0) selon le chiffre 6.5 considérant l'angle α entre l'effort et le fil selon figure 35.

Arrachement selon un angle a

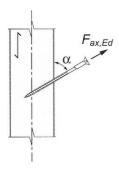
6.5.3.6 La valeur de calcul de la résistance au cisaillement par arrachement $f_{v,c,d}$ vaut:

- pour
$$\alpha \ge 30^\circ$$
: $f_{v,\alpha,d} = \frac{k_\alpha f_{ax,k}}{\pi \left(\sin^2 \alpha + 1, 2 \cos^2 \alpha\right)}$

- pour 0° ≤ α < 30°:
$$f_{v,\alpha,d}$$
 = 20·10⁻³ (π d (l_{ef} - d))^{-0,2} $ρ_k$

$$k_{\alpha}$$
 $k_{\alpha} = 0.62$

 $f_{ax,k}$ valeur caractéristique de la résistance à l'arrachement perpendiculaire au fil en N/mm² fre 6.5.3.7


 α angle entre l'effort et le fil selon la figure 35

d diamètre nominal en mm selon les chiffres 6.5.1.2 et 6.5.1.3

 $l_{\it ef}$ longueur efficace du filetage en mm selon le chiffre 6.5.3.4

 ρ_k valeur caractéristique de la densité en kg/m³.

Figure 35: Angle α entre l'effort et le fil

- Valeur caractéristique perpendiculaire au fil
- Vis de 6 mm à 12 mm

$$\begin{split} f_{ax,k} &= 0.52 \, d^{-0.5} \, l_{ef}^{-0.1} \, \rho_k^{\ 0.8} \, k_d \\ d_1 & \text{diamètre à fond de filet en mm} \\ d & \text{diamètre nominal en mm selon les chiffres 6.5.1.2 et 6.5.1.3} \\ l_{ef} & \text{longueur efficace du filetage en mm selon le chiffre 6.5.3.4} \\ \rho_k & \text{valeur caractéristique de la densité en kg/m}^3 \\ k_d & k_d \leq d/8 \text{ et } k_d \leq 1 \\ f_{ax,k} &= f_{ax,k,\text{EN14592}} \left(\frac{\rho_k}{\rho_a}\right)^{0.8} \end{split}$$

 $f_{ax,k}$ valeur caractéristique de la résistance à l'arrachement perpendiculaire au fil en N/mm² paramètre caractéristique d'arrachement perpendiculaire au fil en N/mm², déterminé c SN EN 14592

 ho_a densité en relation avec $f_{ax,k,{\rm EN14592}}$

 ρ_k valeur caractéristique de la densité en kg/m³.

Selon avis technique Würth

A.1.3.1 Résistance axiale à l'arrachement

La valeur caractéristique du paramètre d'arrachement pour un angle de $30^{\circ} < \alpha \le 90^{\circ}$ par rapport à la direction du fil sur la base d'une masse volumique caractéristique des matériaux de construction en bois de 350 kg/m^3 s'élève à : $f_{ax,k} = 12,0 \text{ N/mm}^2$ pour des vis présentant un diamètre de $3,0 \text{ mm} \le d \le 5,0 \text{ mm}$, $f_{ax,k} = 11,5 \text{ N/mm}^2$ pour des vis présentant un diamètre de $6,0 \text{ mm} \le d \le 7,0 \text{ mm}$,

 $f_{ax,k}$ = 11,0 N/mm² pour des vis présentant un diamètre de d = 8,0 mm

 $f_{ax,k}$ = 10,0 N/mm² pour des vis présentant un diamètre de d \geq 10,0 mm.

Poinçonnement de la tête de vis

$$R_{ax,d} = k_{\alpha} \, n_{tot}^{0,9} \, f_{head,k,\text{EN14592}} \, d_h^{\, 2} \left(\frac{\rho_k}{\rho_a}\right)^{0,8} \tag{108}$$

$$k_{\alpha} \qquad k_{\alpha} = 0,62$$

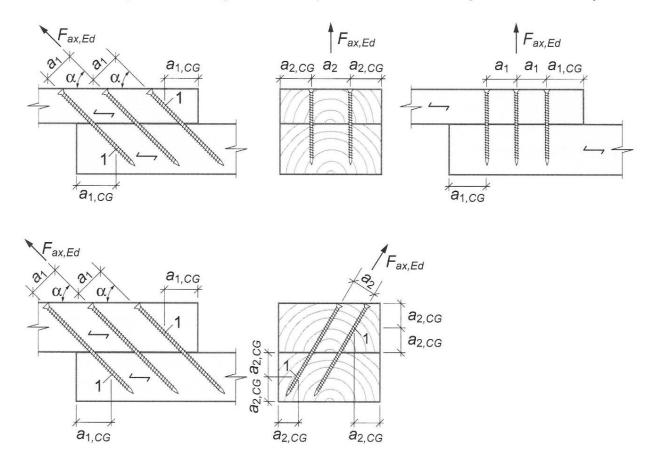
$$n_{tot} \qquad \text{nombre de vis efficaces de l'assemblage}$$

$$f_{head,k,\text{EN14592}} \text{ paramètre caractéristique du poinçonnement de la tête perpendiculaire au fil en N/mm², déterminé selon SN EN 14592} diamètre de la tête de vis en mm
$$\rho_a \qquad \text{densité en relation avec } f_{head,k,\text{EN14592}} \, \text{en kg/m³}$$

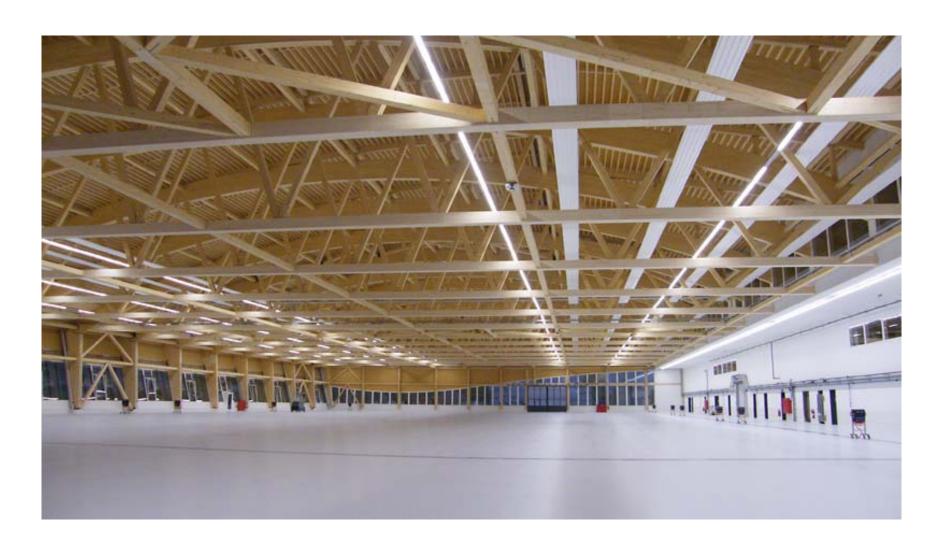
$$\rho_k \qquad \text{valeur caractéristique de la densité en kg/m³}.$$$$

Il faut aller voir les documents du fournisseur... p.13 p.14 / ann 1

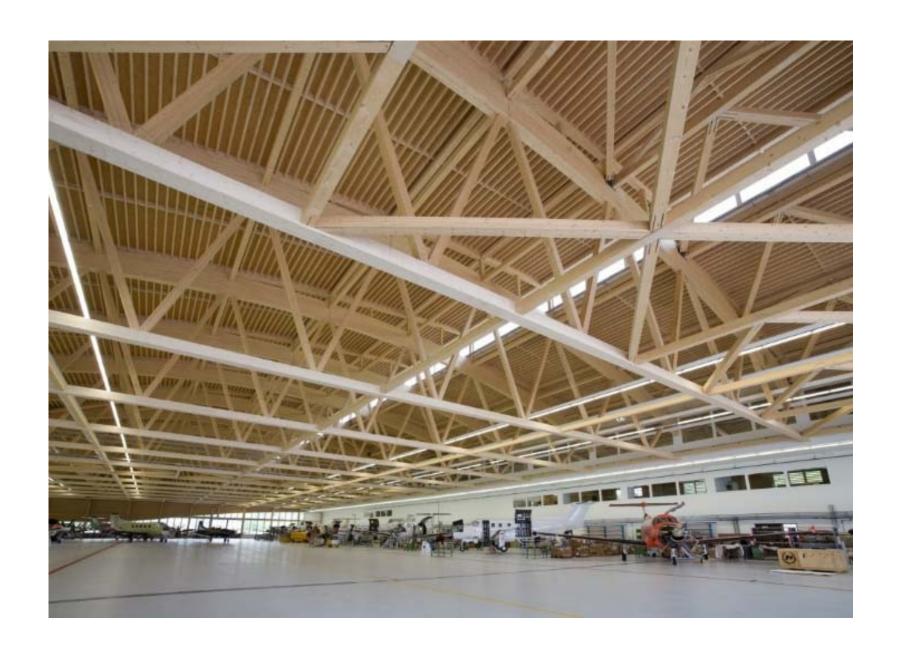
A l'arrachement – distance entre les vis


Tableau 36: Espacements minimaux de vis sollicitées dans leur axe pour des épaisseurs de bois $t \ge 12 d$

7 d	5 d ¹⁾	10 <i>d</i>	4 d
a ₁	a_2	a _{1,CG}	a _{2,CG}
		filetée dans la pièce considérée	de la partie filetée dans la pièce considérée
		gravité de la partie	centre de gravité
parallèle au fil	perpendiculaire au fil	au fil du centre de	culaire au fil du
entre vis dans un plan	Espacement minimal entre vis dans un plan	Distance au bord minimale parallèle	Distance au bord minimale perpendi-
Espacement minimal	Espacement minimal	Distance au bord	Distance au bord


Les espacements dans un plan perpendiculaire au fil a_2 peuvent être réduit lors de préperçage jusqu'à 3d, si la valeur de calcul de la résistance à l'arrachement resp. à l'enfoncement $R_{ax,d}$ selon l'expression (103) est réduite par le coefficient $k_{red} = (a_2/5d)^{0.35}$.

A l'arrachement – distance entre les vis


Figure 33: Espacements minimaux des vis sollicitées dans leur axe (1: centre de gravité de la partie filetée dans la pièce considérée)

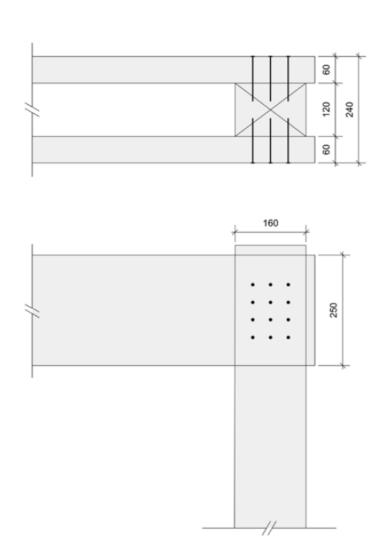
Halle pilatus – n'Holzbau AG

Halle Pilatus – n'Holzbau AG

Halle Pilatus – n'Holzbau AG

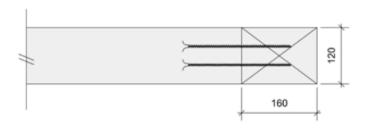
Halle Pilatus – N'Holzbau AG

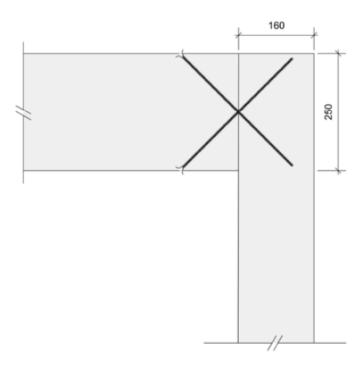
Halle Pilatus – n'Holzbau AG



Commentaire sur les exercices

- Traction compression
 - 2 solutions sont proposées au niveau de l'exercice
 - Attention avec les sections possible!!! BLC ou C24
 - D'ailleurs le corrigé est faux... les BLC plutôt des sections multiple de 4cm!!!


Exercice du jour


Portique

Exercice du jour

Portique

